Bhavan's Vivekananda College

of Science, Humanities and Commerce (Sainikpuri, Secunderbad, Telangana – 500094) Autonomous College – Affiliated to Osmania University Accredited with 'A' Grade by NAAC

M.Sc Biochemistry

Program Outcomes:

PO1: Knowledge: Apply the knowledge of basic concepts, fundamental principles and scientific theories and processes related to the fields of life sciences with their relevance in day-to-day life.

PO2: Analytical Skills: Select and implement the analytical skills acquired, in design of experiments followed by its effective execution in scientific research, industry and entrepreneurship.

PO3: Investigations and Problem analysis: Identify and investigate socially relevant issues using knowledge of Science and technology by design of experiments, analysis, interpretation of data and provide valid conclusions.

PO4: Design and development of solutions: Design innovative solutions for various societal needs like health care, food, water and energy through research and development with appropriate consideration for cultural, societal, environmental, public health and safety.

P05: Communication: Communicate effectively on problems, issues and solutions with community and with society at large, such as being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

P06: Ethics & Environment: Apply ethical principles and commit to professional ethics and responsibilities and norms in research and the functional areas, understand the issues of environmental context and sustainable development.

P07: Individual and Team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

PO8: Self-directed and Life-long Learning: Acquire the ability to engage in independent and life-long learning in the broadest context of socio, economic and technological changes.

Program Specific Outcomes

PSO1: Implement the knowledge of Biomolecules, Enzymes, Bioenergetics, Bioanalytical techniques, Microbiology and Biotechnology to formulate procedures and implement in research and industries.

PSO2: Apply the concepts of Clinical biochemistry, Immunology, Physiology, Endocrinology and Cell signalling to devise new protocols and develop health care products in clinical and immuno diagnostics.

PSO3: Integrate the knowledge of Molecular Biology, Gene regulation and Computational Biology to address real life problems.

Course Outcomes:

Name	e of the Course	CHEMISTRY AND METABOLISM OF PROTEINS, LIPIDS & PORPHYRINS
Cours	se Code	BI101T
CO1	Relate structural	organization of proteins with their properties
	and functions.	
CO2	Correlate the ge	netic defects with impaired amino acid
	metabolism.	
C03	Associate the dif	ferent classes of lipids with their tissue
	distribution.	
CO4	Relate the genetic	defects with altered lipid metabolism.

Name	of the Course	CHEMISTRY, METABOLISM OF CARBOHYDRATES, NUCLEIC ACIDS AND VITAMINS
Cours	se Code	BI102T
CO1	Differentiate the s	structural features and properties of various
	carbohydrates.	
CO2	Relate various m	etabolic events of carbohydrates and their
	significance.	
C03	Distinguish the st	ructural features, properties and metabolism
	of nucleic acids.	
CO4	Implement the imp	portance of vitamins in daily health.

Name	of the Course	BIO-ANALYTICAL TECHNIQUES
Cours	se Code	BI103T
CO1	Apply relevant sp	pectroscopic method in study of molecular
	mass and structur	re of biomolecules.
CO2	Analyse various	biomolecules based on their physical and
	chemical propertie	s by different chromatographic methods.
C03	Design protocol	for separating and identifying proteins or
	nucleic acids u	using centrifugation and electrophoresis
	methods.	
CO4	Interpret the use o	f specific isotope for a particular study.

Name of the Course		BIOENERGETICS AND PHOTOSYNTHESIS
Course Code		BI104T
CO1	Relate the concept	ts of Thermodynamics to biological oxidation
	and energy produc	ction.
CO2	Differentiate the	structural organization of various bio
	membranes.	
C03	Relate different m	nembrane transport mechanisms with their
	functions.	
CO4	Distinguish the di	fferent pathways of photosynthesis and their
	regulation.	

Name	of the Course	ENZYMOLOGY
Cours	se Code	BI201T
CO1	Interpret the conce	epts of enzyme catalysis.
CO2	Differentiate kinetic behaviour of single and bi-substrate reactions, in presence and absence of inhibitors	
C03	Demonstrate the knowledge of enzyme catalytic mechanisms in further research.	
CO4	Value the important homeostasis.	rtance of enzyme regulation in cellular

Name	of the Course	MOLECULAR BIOLOGY
Cours	se Code	BI202T
CO1	Differentiate bety	ween prokaryotic and eukaryotic DNA
	replication.	
CO2	Use the concepts	of DNA repair mechanisms to maintain
	genetic stability.	
C03	Compare the role	e of proteins involved in prokaryotic and
	eukaryotic transcr	iption.
CO4	Distinguish the di	fferent types of translation and translational
	systems.	

Name	of the Course	BIOCHEMICAL GENETICS AND MODEL ORGANISMS
Cours	se Code	BI203T
CO1	Interpret the chem mutations.	nical basis of heredity and the importance of
CO2	Demonstrate the pedigree analysis.	concept of linkage and mapping genes by
C03	Predict bacterial mechanisms.	gene mapping to different gene transfer
CO4	Relate the biologic organisms.	cal processes of a model organism to higher

Name	of the Course	BIOSTATISTICS AND CLINICAL BIOCHEMISTRY
Cours	se Code	BI204T
CO1	Use and interpret	results of statistical analysis.
CO2	Categorize and exvalues.	xamine samples for normal and abnormal
C03	Analyze the under	rlying biochemical defect in various disease
CO4	Determine the role	e and importance of molecular diagnostics.

Name	of the Course	GENE REGULATION AND GENETIC ENGINEERING
Cours	se Code	BI301T
CO1	Illustrate various : systems.	regulatory strategies employed in prokaryotic
CO2	Compare various of	concepts of eukaryotic gene regulation.
C03		ledge to construct genomic libraries and s in biotech projects and companies
CO4	1100	engineering methods in expression of eins and in genetic profiling.

Name	of the Course	IMMUNOLOGY AND IMMUNOTECHNOLOGY
Cours	se Code	BI302T
CO1	Identify the compo	nents of immune system
CO2	Interpre t cellular tumor formation.	processes involved in transplantation and
C03	Interpret the caus immunosuppressi	es of hypersensitive reaction and response to ve drugs.
CO4	immunological n	iples of antigen-antibody interactions in nethods including diagnostics and also as on significance of vaccination.

Name	of the Course	CELL SIGNALING, DIFFERENTIATION AND METHODS OF CELL STUDY
Cours	se Code	BI303B
CO1	Interpret the struc	tural organisation of different cell types.
CO2	Identify suitable methods to study cells.	
C03	Interpret the different cellular signalling pathways	
CO4	Correlate the role	of growth factors in cell differentiation.

Name	of the Course	ENDOCRINOLOGY AND METABOLIC DISORDERS
Cours	se Code	BI304T
CO1	Categorize the type	es of hormones and their physiology.
CO2	Analyse the proces	ss of endocrine regulation.
C03	Interpret metaboli carbohydrate meta	c disorders associated with amino acid and abolism.
CO4	Interpret metabo nucleotide metabo	lic disorders associated with lipid and lism.

Name of the Course		PHYSIOLOGY AND XENOBIOTICS
Course Code		BI401T
CO1	Apply the under	standing of the physiological process of
	neurotransmission	1.
CO2	Apply the knowledge of muscle physiology to muscle disorders.	
C03	Correlate the knowledge of the human reproductive system to	
	fertility and pregna	ancy.
CO4	Apply the knowled	ge of liver detoxification to drug metabolism

Name of the Course		BIOINFORMATICS
Course Code		BI402T
CO1	Apply the tools of genomics to compare different genome	
	sequences.	
CO2	Determine the appropriate methods for transcriptome analysis.	
C03	Apply the knowle	edge of proteomics methods for proteome
	analysis.	
CO4	Correlate the importance and relevance of synthetic genes.	

ame of the Course		BIOTECHNOLOGY
Course Code		BI403T
CO1	Identify the various stages of downstream processing.	
CO2	Apply genetic engineering methods to use plants as bioreactors.	
C03	Design protocols products using an	for the production of biotechnological imal systems.
CO4	Apply the knowledge of protein engineering in development of novel proteins or drugs.	

Name of the Course		MICROBIOLOGY
Course Code		BI404T
CO1	Categorize the b	acteria and identify appropriate bacterial
	culturing methods	
CO2	Categorize the viruses and identify suitable purification and	
	assay methods for isolation of viruses.	